返回列表 发帖

GWD-4-4滔滔

Q4:For a nonnegative integer n, if the remainder is 1 when 2n is divided by 3, then which of the following must be true?

I.
n is greater than zero. n=0

II.
3n = (-3)n

III.
√2n
is an integer.



A.
I only

B.
II only

C.
I and II

D.
I and III

E.
II and III

这个题I 错,II and III怎么解?

收藏 分享

If 2,n is an even;

if 3, n is an even ,too.

2^n= 3k +1 if n is an even.

Thus 2 and 3 are correct.

TOP

but how to get the answer that n is an even not an odd when 2^n=3k+1

TOP

用数学归纳法给出证明,我怕英文表达不清,用中文啦

如果:2的2n次方除以3余1,此时2n为偶数, 则
2的2(n+1)次方除以3的余数等于2的2n次方的余数即1再乘以4,其除以3的余数为1,所以所有偶数幂时余数为1。
2的2n+1次方(此时幂为奇数),其余数等于2的2n次方的余数1再乘以2,余数为2,所以所有奇数幂时余数为2

用数归发证明很严谨,但是一我表达不清楚(不会表示次方),二没有必要,你带进去几个数字是一下就行了

TOP

thanks a lot!

TOP

why is 1st choice not correct, as clearly mentioned "if the remainder is 1 when 2^n is divided by 3". assuming that n=0, then we could not get the remainder to be 1 !!

TOP

? 2^0=1, 1/3不是余1么

TOP

ye...基础太差,惭愧!!

TOP

代入几个数字最快

确定一错了以后就没必要看2了  只看3就行了

TOP

返回列表

站长推荐 关闭


美国top10 MBA VIP申请服务

自2003年开始提供 MBA 申请服务以来,保持着90% 以上的成功率,其中Top10 MBA服务成功率更是高达95%


查看