If the sequence x1, x2, x3, …, xn, … is such that x1 = 3 and xn+1 = 2xn – 1 for n ≥ 1, then x20 – x19 = 因为:Xn+1=2Xn -1 所以:Xn=2Xn-1 -1 两式相减,得Xn+1 - Xn=2(Xn-Xn-1) 同理可得,Xn-Xn-1=2(Xn-1-Xn-2) ……以此类推 Xn+1-Xn=2(Xn-Xn-1)=2^(n-1)*(X2-X1),因为X2=2X1-1=6-1=5 所以Xn+1-Xn=2^n,当n=19时,选A.
A. 219 B. 220 C. 221 D. 220 - 1 E. 221 - 1 |