返回列表 发帖

[求助]一道数学题

Q7:

A school administrator will assign each student in a group of n students to one of m classrooms.  If 3 < m < 13 < n, is it possible to assign each of the n students to one of the m classrooms so that each classroom has the same number of students assigned to it?

(1)   It is possible to assign each of 3n students to one of m classrooms so that each classroom has the same number of students assigned to it.

(2)   It is possible to assign each of 13n students to one of m classrooms so that each classroom has the same number of students assigned to it.

                  

A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.

B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.

C. BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.

D. EACH statement ALONE is sufficient.

E. Statements (1) and (2) TOGETHER are NOT sufficient.

答案是B

请高人帮帮忙,解释一下这个题是什么意思!

感激不尽

收藏 分享

ls的正解。
题目问的是M能不能整除N。给出M>13, N < 13
条件一 3M能整除N (反例 3×16/ 6 可以整除, 16/6 不能整除)
条件二 13M能整除N
所以B是答案

TOP

答案是b.
13n可以背m除尽, 3<m<13, m不可能被13除尽,所以n一定是m的倍数. 所以可以推出.

TOP

可以理解成,求n/m是否能整除?而两个条件则分别理解为,3n/m 和13n/m 都可以整除 关键在于m的数值。注意到3

TOP

返回列表

站长推荐 关闭


美国top10 MBA VIP申请服务

自2003年开始提供 MBA 申请服务以来,保持着90% 以上的成功率,其中Top10 MBA服务成功率更是高达95%


查看