n is an even,H(n) represents the product of all even numbers from 2 to n.
what is the least possible prime factor of H(100)+1
A: 0-9
B 10-20
C 20-30
D greater that 40
h(100)=2*4*6*...*100=(2*1)*(2*2)*(2*3)*(2*4)...*(2*50)=2^50*(1*2*3*...*50)=2^50*50!
目前只想到这里,也想请教~
h(100)=2*4*6*...*100=(2*1)*(2*2)*(2*3)*(2*4)...*(2*50)=2^50*(1*2*3*...*50)=2^50*50!
令P*X=h(100)+1=2^50*50!+1
X=2^50*50!/p+1/p
由于X是整数,所以P>50
直接知道P=h(100)+1
=(2*4*6...*100)+1
= 50! *2^50 +1
因为h(100)肯定可以被50以下所有的质数整除,所以h(100)+1的话不能被50以下所有的质数整除。
欢迎光临 国际顶尖MBA申请交流平台--TOPWAY MBA (http://forum.topway.org/) | Powered by Discuz! 7.2 |