Board logo

标题: gwd11-25 [打印本页]

作者: hedgeforfun    时间: 2005-12-11 07:26     标题: gwd11-25

GWD11-25.If the sequence x1, x2, x3, …, xn, ?is such that x1 = 3 and xn+1 = 2xn – 1 for n ≥ 1, then x20 x19 =

A. 219

B. 220

C. 221

D. 220 - 1

E. 221 - 1

Hot to get answer A, help please.


作者: thinkers    时间: 2005-12-11 07:34

由xn+1 = 2xn – 1

xn+1xn= xn – 1,所以x20 x19 =x19–1;

又由xn+1 = 2xn – 1

xn+1 = 2(2xn-1– 1) – 1=。。。=2^nx1–(2^n–1),

所以x20 x19 =x19–1=3*2^18–2^18+1-1=2*2^18=2^19


作者: hedgeforfun    时间: 2005-12-11 18:49

many  thanks !!!




欢迎光临 国际顶尖MBA申请交流平台--TOPWAY MBA (http://forum.topway.org/) Powered by Discuz! 7.2