GWD11-25.If the sequence x1, x2, x3, …, xn, ?is such that x1 = 3 and xn+1 = 2xn – 1 for n ≥ 1, then x20 – x19 =
A. 219
B. 220
C. 221
D. 220 - 1
E. 221 - 1
Hot to get answer A, help please.
由xn+1 = 2xn – 1
xn+1–xn= xn – 1,所以x20 – x19 =x19–1;
又由xn+1 = 2xn – 1
xn+1 = 2(2xn-1– 1) – 1=。。。=2^nx1–(2^n–1),
所以x20 – x19 =x19–1=3*2^18–2^18+1-1=2*2^18=2^19
欢迎光临 国际顶尖MBA申请交流平台--TOPWAY MBA (http://forum.topway.org/) | Powered by Discuz! 7.2 |