Board logo

标题: 【GMAT Tip】Let It Cancel Out [打印本页]

作者: wendy~    时间: 2016-12-30 10:18     标题: 【GMAT Tip】Let It Cancel Out

When faced with Geometry problems with variables, many test takers will approach the question with fear, believing they are forgetting some obscure geometric rule that is the only path towards a correct answer.

In reality, as we’ve covered in a few past posts, the understanding required to do well on Geometry questions on the GMAT is basic – Pythagorean theorem, special right triangles, area formula, and the like that you’ve found in the first half of an introductory Geometry course. Occasionally, we see some oddball questions associated with central angles, but there are still multiple ways to get to the correct answer.

But beyond these simple rules, the majority of Geometry problems in the GMAT Quantitative section are Algebra questions in disguise, requiring you understand what the simple geometry concept is that is being tested, then using Algebra-related problem solving from there.

Let’s examine a question that fits this mold:

In an xy-coordinate plane, a line is defined by y = kx + 1. If (4, b), (a, 4), and (a, b +1) are three points on the line, where a and b are unknown, then k = ?

Initially, we may think that this problem is impossible – if a and b are unknown, how in the world will we find a third variable? But, if we assess the answer choices, we’ll notice that these are concrete values, and the two value questions suggest that we should consider an algebraic route, perhaps with factoring?

Either way, the best way to tackle these questions is to start with what you know, then work it out from there – you’ll never be successful by trying to jump to the right answer choice.

So, what do we know here? We know that the line is y = kx + 1 and we have three points we can plug in, even if they do consist of variables. We will start with (4,b):

y = kx + 1
b = k(4) + 1

Then (a,4):

y = kx + 1
4 = k(a) + 1

Then (a, b+1):

y = kx + 1
b + 1 = k(a) + 1

That gives us three equations:

b = 4k + 1
4 = k(a) + 1
b + 1 = k(a) + 1

The trigger here is to remember the answer choices are actual values, so we need to figure out how to get the variables to cancel out. It doesn’t look like there are any squared values, so at the very least, we should be able to eliminate (C) and (E) for answer choices.

One route to take is to solve for k(a):

k(a) = 3

Then, b + 1 = 3 + 1 , making b = 3

From there,

3 = 4k + 1
2 = 4k
2/4 = k  > ½

Therefore the correct answer is (A).

Many “Geometry” GMAT problems will play out this way. We are excited to have a basic understanding of lines and coordinate points, but from there, it is all about setting up equations to find a value. Whenever tackling Geometry problems with lots of values, just remember to cancel it out!


作者: Turmoil    时间: 2017-1-6 15:27

thanks。。。。。。
作者: 晨晨    时间: 2017-1-13 11:02

Mark一下!!!
作者: Babi    时间: 2017-1-19 10:20

O(∩_∩)O谢谢..............
作者: fester    时间: 2017-2-9 13:00

Mark一下!!!
作者: 圣诞老人    时间: 2017-2-24 11:33

O(∩_∩)O谢谢....
作者: Frolic    时间: 2017-3-28 11:28

thanks  for sharing....
作者: Droop    时间: 2018-1-8 11:19

顶顶顶顶顶
作者: Good    时间: 2018-1-29 16:01

谢谢分享...
作者: W先生    时间: 2018-2-8 14:20

Mark!!!
作者: xicheng    时间: 2018-3-6 11:29

顶顶顶顶顶
作者: Tienl    时间: 2018-3-22 15:59

赞赞赞赞
作者: Trancy    时间: 2018-4-3 12:18

Mark!!!
作者: Elastic    时间: 2018-4-20 12:46

Thanks♪(・ω・)ノ
作者: gramous    时间: 2018-5-11 12:01

赞赞赞
作者: Gradual    时间: 2018-5-30 10:47

赞赞赞
作者: Defre    时间: 2018-6-26 15:49

thanks.......
作者: Badman    时间: 2018-7-16 12:20

thanks/.....
作者: Qaoyin    时间: 2018-7-26 17:19

赞赞赞赞赞赞赞
作者: None    时间: 2018-10-12 13:08

thanks......
作者: courage    时间: 2018-11-2 11:18

看看看
作者: easygoing    时间: 2018-11-20 09:57

看看....
作者: Babi    时间: 2018-12-4 17:09

赞赞赞赞赞赞赞赞
作者: sandy2    时间: 2018-12-17 10:49

Thanks♪(・ω・)ノ
作者: Henrywang    时间: 2018-12-28 11:06

O(∩_∩)O谢谢...
作者: Frolic    时间: 2019-1-21 13:38

赞赞赞赞赞赞赞
作者: baby5    时间: 2019-2-1 15:38

mark     mark
作者: Hunta    时间: 2019-2-26 10:35

thanks  for   sharing...
作者: Spacy    时间: 2019-3-14 10:32

看看...
作者: Noamen    时间: 2019-3-27 14:01

谢谢楼主的分享...
作者: stanfty    时间: 2019-4-9 10:38

赞楼主分享
作者: Tommi    时间: 2019-4-18 13:55

支持支持...
作者: somebody2    时间: 2019-4-29 11:18

thanks...
作者: evade    时间: 2019-5-10 12:44

赞一个!
作者: 冲刺    时间: 2019-5-22 10:02

赞赞赞一个!
作者: Havae    时间: 2019-5-30 13:56


作者: Several    时间: 2019-6-10 13:27


作者: fanda    时间: 2019-6-19 15:38

支持支持~
作者: sag    时间: 2019-6-27 13:12

顶一顶~
作者: 不完美    时间: 2019-7-5 15:49

感谢分享!
作者: Irone    时间: 2019-7-15 10:09


作者: Vances    时间: 2019-7-23 13:35

O(∩_∩)O谢谢
作者: manpower    时间: 2019-7-31 12:02

围观围观!
作者: Imomo    时间: 2019-8-8 13:04

赞一个..,.
作者: Kaznew    时间: 2019-8-19 10:38

感谢分享...
作者: Combat    时间: 2019-8-28 14:12

O(∩_∩)O谢谢...
作者: ellipse    时间: 2019-9-5 15:52

mark    mark
作者: herbicide    时间: 2019-9-16 13:37

谢谢分享
作者: Kanga    时间: 2019-9-25 15:57

谢谢分享...
作者: Tishui    时间: 2019-10-12 10:38

mark    mark
作者: Trocy    时间: 2019-10-22 10:16

谢谢分享
作者: Eich    时间: 2019-10-31 13:53

谢谢分享
作者: Gourmet    时间: 2019-11-13 10:59

谢谢分享...
作者: sofa    时间: 2019-11-22 17:05

顶一顶...
作者: Roy    时间: 2019-12-9 10:23

谢谢分享
作者: Engage    时间: 2019-12-23 16:28

thanks....
作者: Missy9    时间: 2020-1-6 14:03

mark    mark
作者: Konnde    时间: 2020-1-31 10:20

thanks....
作者: Gourmet    时间: 2020-2-11 16:52

thanks~
作者: somebody2    时间: 2020-2-21 11:03

thanks....




欢迎光临 国际顶尖MBA申请交流平台--TOPWAY MBA (http://forum.topway.org/) Powered by Discuz! 7.2