Board logo

标题: 【GMAT Tip】It’s Always the Same with Exponents [打印本页]

作者: wendy~    时间: 2016-9-18 12:00     标题: 【GMAT Tip】It’s Always the Same with Exponents

When evaluating exponent questions in the quantitative section, many test takers freak out when faced with seemingly messy but frequently appearing problems. “Do I need to know logs?” “Wait, is this testing something from Calculus?”

Have no fear – while exponents show up often on the GMAT, how these questions show up is repetitive, requiring that we take the same steps over and to solve them.

Key things we need to know when it comes to exponents:


When we multiply numbers containing exponents, we add the exponents… but they must have the same base.

For example: 2^2 + 2^2 = 2^4. We add the 2 powers to get to 2 raised to the power of 4.

But we cannot add 2^2 + 4^2 – the 4 must be converted to the base of a 2. Therefore, 2^2 + (2^2)^2 = 2^2 + 2^4 = 2^6.

2^2 + 3^2 cannot be added just through the exponents. We must simply the number first and then add. Therefore, 2^2 + 3^2 = 4 + 9 = 13.


For the division of numbers containing exponents, we subtract the exponents, and similar rules about bases apply.

For example: 2^4/2^2 = 2^(4-2) = 2^2

But we cannot do anything with 3^2/2^2. We simplify to 9/4.


When adding numbers containing exponents, we cannot add the exponents, and same goes for subtraction.

For example: 5^4 + 5^2 is not equal to 5^6, but is in fact 750 (625 + 125 = 750). Therefore, when we see a tricky problem with numbers with a series of exponents, then we take a pattern-based approach and not merely a simplification of factors, bases, and exponents.

Take this tricky test question:

What is the value of 5 + 4 * 5 + 4 * 5^2 + 4 * 5^3 + 4 * 5^4 + 4 * 5^5?

This is technically a sum of a geometric sequence question and can be solved using the equation Sn = a(r^n – 1) / r – 1 where Sn is equal to the sum of the terms, a is the first term, and r is the common ratio.

But, it is highly unlikely that we are able to remember such a complex equation and plus, the GMAT is definitely not testing our ability to remember formulas. Instead, a better path to take is in the form of factoring.

We know we have a sum that incorporates six terms. If all terms were equal to each other, then the sum would be Sn = 6 * (4 * 5^5) = 24 * 5^5 = which would be somewhere around 5^7 if we rounded 24 up to 25 (or 5^2).

Then, in assessing the answer choices, we know that the sum must be a bit less than 5^7, leaving us with one – and the correct – option (A) 5^5.

And for the final tip around exponents:


Don’t do so much math when it is just about the units digit.

We’ll also tackle this concept through a practice problem.

What is the units digit of 7^75 + 6?

We promise, you never, ever need to multiply out seven 75 times to get to the right answer. A pattern based approach is also appropriate here. When you think about outcomes when 7 is raised to a power:

7^1 = 7

7^2 = 49

7^3 = 343

7^4 = 2401

7^5 = 16807

Telling us that the pattern repeats in a 7-9-3-1. 75/4 gives us a remainder of 3, which means that 7^75 will end in a 3 units digit, same as 7^3. 3 + 6 = 9 giving us the correct answer of (E) 9.

When it comes to exponents, remember – you never have to multiply numbers hundreds of times by hand, there is always a simpler way!


作者: baby5    时间: 2016-9-29 10:56

谢谢楼主的分享...
作者: opinion    时间: 2016-10-18 12:26

Mark一下!!!
作者: sodasnow    时间: 2016-11-8 13:27

~\(≧▽≦)/~
作者: Atinu    时间: 2016-11-22 17:12

赞赞赞赞赞
作者: Missy9    时间: 2016-11-30 16:12

thanks...
作者: fataly    时间: 2016-12-8 10:41

马克艾克马克马克马克
作者: courage    时间: 2016-12-14 13:26

顶!d=====( ̄▽ ̄*)b
作者: 人生如戏    时间: 2016-12-23 10:38

Mark一下!!!
作者: Recipient    时间: 2017-1-6 12:44

thanks...
作者: Krist    时间: 2017-1-12 12:17

\(^o^)/~
作者: Satav    时间: 2017-1-19 09:44

很不错的tip,谢谢啦/.....
作者: baby5    时间: 2017-2-9 11:29

顶顶顶顶
作者: 痕迹    时间: 2017-2-20 10:18

thanks....
作者: Fraine    时间: 2017-3-27 12:21

O(∩_∩)O谢谢....
作者: sandy2    时间: 2018-1-4 16:55

O(∩_∩)O谢谢
作者: Serita    时间: 2018-1-24 11:32

thanks...
作者: Situter    时间: 2018-2-5 12:10

thanks...
作者: twilight    时间: 2018-2-11 12:15

thanks...
作者: 时光    时间: 2018-3-2 13:33

顶顶顶顶顶
作者: 大麻袋    时间: 2018-3-14 15:05

thanks...
作者: Demin    时间: 2018-3-26 14:56

顶顶顶顶顶顶
作者: daden    时间: 2018-4-16 11:45

顶顶顶顶顶
作者: issue    时间: 2018-5-16 11:39

顶顶顶顶顶顶
作者: muffle    时间: 2018-5-31 15:36

Thanks♪(・ω・)ノ
作者: Feife    时间: 2018-6-15 16:50

Thanks♪(・ω・)ノ
作者: Imomo    时间: 2018-7-24 13:34

Thanks♪(・ω・)ノ
作者: Roy    时间: 2018-8-10 11:09

Thanks♪(・ω・)ノ
作者: Year    时间: 2018-8-31 11:57

Thanks♪(・ω・)ノ
作者: christ    时间: 2018-9-21 18:34

thanks......
作者: Irghe    时间: 2018-10-19 12:34

赞赞赞赞赞赞
作者: Laborious    时间: 2018-11-7 16:47

Thanks♪(・ω・)ノ
作者: Papap    时间: 2018-11-23 16:04

顶顶顶顶顶顶顶顶
作者: Sund    时间: 2018-12-6 15:36

mark   mark
作者: Earticle    时间: 2018-12-14 13:45

O(∩_∩)O谢谢
作者: Laborious    时间: 2018-12-26 10:49

谢楼主~
作者: scratch    时间: 2019-1-8 15:51

顶一个!
作者: Oirghn    时间: 2019-1-23 15:25

mark      mark
作者: chatter    时间: 2019-2-2 16:07

thanks....
作者: Boboy    时间: 2019-2-22 10:47

thanks...
作者: Sata    时间: 2019-3-11 10:47

看一看...
作者: embrace    时间: 2019-4-4 15:02

mark              mark
作者: Sequey    时间: 2019-4-17 14:15

thanks/...
作者: making    时间: 2019-4-26 16:49

谢谢楼主...
作者: Engage    时间: 2019-5-7 15:58

thanks 。。。
作者: Sifei    时间: 2019-5-16 17:07

谢谢分享...
作者: Earm    时间: 2019-5-27 14:46

赞一赞...
作者: Namei    时间: 2019-6-4 16:29


作者: Daiarn    时间: 2019-6-14 10:21

mark    mark
作者: Liver    时间: 2019-6-24 13:36

顶一顶~
作者: Stomach    时间: 2019-7-1 14:07

thanks...
作者: Uerb    时间: 2019-7-9 13:45

thanks...
作者: Xeroxia    时间: 2019-7-16 12:58

谢谢分享!
作者: Kamey    时间: 2019-7-24 10:57

谢谢!
作者: Neatly    时间: 2019-7-31 16:08

O(∩_∩)O谢谢...
作者: cozycorn    时间: 2019-8-9 14:43

赞分享!!
作者: Bonde    时间: 2019-8-20 10:48

顶一顶.....
作者: Kaide    时间: 2019-8-28 17:07

看一看......
作者: jiluoli    时间: 2019-9-6 10:37

谢谢分享~
作者: Timly    时间: 2019-9-16 16:26

thanks!
作者: Vasme    时间: 2019-9-25 11:56

thanks.....
作者: Silian    时间: 2019-10-10 13:44

顶一顶....
作者: coldness    时间: 2019-10-23 14:15

thx!!
作者: Banbay    时间: 2019-11-8 13:25

感谢感谢!
作者: Xeija    时间: 2019-11-19 18:12

谢谢分享...
作者: opinion    时间: 2019-11-29 15:48

thanks~
作者: Demmy    时间: 2019-12-11 10:08

谢谢分享.....
作者: Warmth    时间: 2019-12-23 10:08

O(∩_∩)O谢谢
作者: prolong    时间: 2020-1-2 18:17

thanks....
作者: Manager    时间: 2020-1-16 09:57

thanks~
作者: Trouble    时间: 2020-2-10 10:06

赞一赞,,,,,
作者: jantore    时间: 2020-2-19 15:05

谢谢~




欢迎光临 国际顶尖MBA申请交流平台--TOPWAY MBA (http://forum.topway.org/) Powered by Discuz! 7.2