Board logo

标题: 【Probability Tip】 Three Strategies That Aren’t Used Enough [打印本页]

作者: carry    时间: 2016-4-6 10:15     标题: 【Probability Tip】 Three Strategies That Aren’t Used Enough

Some GMAT instructors will say that students often place too much emphasis on studying for Probability and Combinatorics, rather than spending more time focusing on the heavy lifters of Algebra and Arithmetic.


Like it or not, GMAT students get fixated on combinatorics and probability because a) these questions are never, never as straightforward as remembering and plugging into the permutation or combination formula and b) these problems have the illusion of being easy and attainable. But these sticky types of GMAT questions are notorious time wasters, driving test takers deep into a rabbit holes without consideration the right strategies.


In this tip, we take a look at three helpful strategies – inverse probability, “lucky twins,” and guess-timating.


Let’s start with considering approaching the question backwards, or rather, looking at the inverse probability first.


So, what exactly does inverse probability mean? Take this question for example:

Each year, three space shuttles are launched: two in June and one in October. If each shuttle launch is known to occur without a delay in 90% of the cases, and if the current month is January, what is the probability that at least one of the launches in the next 16 months will be delayed?

1. 1/27
2. 3/27
3. 271/1000
4. 729/1000
5. 26/27


This notorious “probability that at least one” question can get even the most diligent students down the road of a messy mathematical mess. What the GMAT would love for you to do is try to figure out every time a delayed launch happens, then divide by the total number of possibilities.


This approach is time-consuming and very prone to error. An easier approach is considering the “inverse probability,” or rather, P(A) = 1 – P(Not A) – the inverse of “at least one” is “none at all,” and “none at all” is easier to understand conceptually and calculate mathematically. Calculate “none at all” and subtract from 1 to get the correct answer of “at least one.”


For this specific question, the answer is found by understanding the chance of having no delays is 90% – so the chance of three consecutive launches without having a delay would be:

90/100 x 90/100 x 90/100 = 729/1000


Smart, time-conscious test takers will fairly quickly realize the answer must be (C) 271/1000 without doing any additional math. Clearly, we want to determine 1 – 729/100, and the units digit in the numerator will most certainly be 1, which would not reduce any further with 1000 as the denominator.


This ties into the second strategy for probability and combinatorics questions – considering “lucky twins,” and guess-timating what an answer might be by understanding what it should be close to based upon available answer choices.


“Lucky twins” are answer choices that add up to 1 in a probability question and can be a consideration if you are running out of time on a complicated problem. If it seems like the situation in the problem happens more often than not, pick the larger of the two lucky twins. If the situation in the problem seems to happen less often, pick the smaller of the two twins, and you might find yourself in lucky with a right answer.


When it comes to guess-timating answer choices, consider doing so on a problem like this one:

20 people at a meeting were born during the month of September, which has 30 days. The probability that at least two of the people in the room share the same birthday is closest to which of the following?

1. 10%
2. 33%
3. 67%
4. 90%
5. 99%


This problem is an impossible nightmare to solve mathematically. Instead, evaluating the answer choices, at the very least every answer choice except for D) and E) should be discounted, giving the test take a 50/50 chance of getting it correct. 20 people and 30 days – when thinking about the inverse probability, the likelihood of not having overlap between birthdays is incredibly small. The correct answer is, however, E).


In summary – try not to be bogged down by complex combinatorics and probability questions. While these do show up less often on the GMAT, overall, evaluate and weigh how the amount of time required to solve one of these problems versus understanding that, with these strategies, you should be able to get to a 50/50 chance quickly, giving yourself more time to solve the questions you do know how to answer.


作者: colony    时间: 2016-4-12 11:36

谢谢分享了
作者: Amyliu    时间: 2016-4-22 17:12

mark一下!
作者: Obtain    时间: 2016-5-9 15:22

thanks  for  sharing...
作者: beast    时间: 2016-7-11 16:20

赞赞赞赞赞
作者: Doubt    时间: 2016-7-28 16:26

O(∩_∩)O谢谢
作者: zoomonkey    时间: 2016-8-30 09:13

mark一下!!!
作者: heaped    时间: 2016-9-19 11:13

顶顶顶顶顶顶顶
作者: surge    时间: 2016-9-30 14:20

<( ̄︶ ̄)↗[GO!]
作者: 松鼠鱼    时间: 2016-10-18 16:06


作者: 郁金香    时间: 2016-10-31 13:53

thanks...
作者: 天音    时间: 2016-11-9 10:01

顶!d=====( ̄▽ ̄*)b
作者: Douai    时间: 2016-11-17 16:22

Mark一下!!!
作者: colony    时间: 2016-11-29 14:13

O(∩_∩)O谢谢
作者: Emory1989    时间: 2016-12-7 11:38

O(∩_∩)O谢谢
作者: sag    时间: 2016-12-13 12:02

顶!d=====( ̄▽ ̄*)b
作者: kingsley    时间: 2016-12-21 16:26

顶顶顶顶顶
作者: Jingyan    时间: 2016-12-28 11:43

O(∩_∩)O谢谢...
作者: muffle    时间: 2017-1-5 13:51

O(∩_∩)O谢谢...
作者: Henrywang    时间: 2017-1-11 13:00

~\(≧▽≦)/~
作者: Beterfi    时间: 2017-1-18 10:12


作者: jiajun    时间: 2017-2-6 13:56

顶顶顶顶顶顶
作者: story    时间: 2017-2-17 10:21

顶顶顶顶顶~
作者: Laborious    时间: 2017-3-21 13:06

O(∩_∩)O谢谢~
作者: Yanst    时间: 2018-8-16 12:01

Mark   Mark
作者: Tomfrank    时间: 2018-9-6 13:44

Thanks♪(・ω・)ノ
作者: Tigerr    时间: 2018-9-27 16:26

thanks.......
作者: Room    时间: 2018-10-29 11:07

谢谢楼主的分享.....
作者: Eloquent    时间: 2018-11-13 11:44

Thanks♪(・ω・)ノ
作者: Amiga    时间: 2018-11-27 16:03

Thanks♪(・ω・)ノ
作者: lovely    时间: 2018-12-7 14:26

thanks.....
作者: sweep    时间: 2018-12-18 10:59

thanks.....
作者: Kaiixin    时间: 2018-12-27 11:15

O(∩_∩)O谢谢...
作者: Tought    时间: 2019-1-10 11:00

赞赞赞赞赞赞赞赞赞
作者: Rangen    时间: 2019-1-24 17:28

顶一个顶一个~
作者: Leader    时间: 2019-2-14 13:59

赞赞赞赞赞赞赞
作者: Conspicuous    时间: 2019-3-1 11:20

谢谢分享...
作者: Tirita    时间: 2019-3-19 14:09

赞一个赞一个...
作者: Badman    时间: 2019-4-1 10:48

顶一个顶一个!
作者: candid    时间: 2019-4-12 13:30

赞楼主的分享……
作者: Tishui    时间: 2019-4-23 16:01

O(∩_∩)O谢谢...
作者: manpower    时间: 2019-5-5 12:52

thanks...
作者: Frolic    时间: 2019-5-17 16:36

谢谢分享...
作者: Karrg    时间: 2019-5-27 17:45

~\(≧▽≦)/~
作者: Appappy    时间: 2019-6-4 17:40

谢谢...
作者: 小石头    时间: 2019-6-14 12:24

顶一顶~
作者: durability    时间: 2019-6-24 11:29

谢谢!
作者: torcy    时间: 2019-7-2 13:26

O(∩_∩)O谢谢
作者: Ronge    时间: 2019-7-11 10:13

谢谢分享!
作者: Gourmet    时间: 2019-7-19 10:59

顶起!学习!
作者: flyingzo    时间: 2019-7-26 10:10

谢谢!
作者: away    时间: 2019-8-5 15:16

顶一顶...
作者: Earm    时间: 2019-8-14 14:19

O(∩_∩)O谢谢
作者: Aousey    时间: 2019-8-23 11:10

顶一顶.....
作者: Mondt    时间: 2019-9-2 13:32

mark     mark
作者: Situter    时间: 2019-9-12 14:40

谢谢分享!
作者: Havae    时间: 2019-9-24 12:39

感谢感谢...
作者: Menneny    时间: 2019-10-8 17:02

O(∩_∩)O谢谢...
作者: 大奔    时间: 2019-10-25 10:42

mark    mark
作者: Oirghn    时间: 2019-11-6 10:30

谢谢分享感谢~
作者: Silian    时间: 2019-11-18 14:09

顶一顶...
作者: aside    时间: 2019-11-29 09:50

谢谢分享~
作者: Dardde    时间: 2019-12-10 13:44

thanks....
作者: Inaeven    时间: 2019-12-20 16:51

谢谢分享!
作者: chillsy    时间: 2020-1-2 13:33

看一看....
作者: Sata    时间: 2020-1-14 14:33

thanks……
作者: Laneda    时间: 2020-2-6 09:29

thanks.....
作者: Janan    时间: 2020-2-17 14:30

thanks~
作者: kiba    时间: 2020-2-28 15:31

thanks~




欢迎光临 国际顶尖MBA申请交流平台--TOPWAY MBA (http://forum.topway.org/) Powered by Discuz! 7.2