Q31:
A certain right triangle has sides of length x, y, and z, where x < y < z. If the area of this triangular region is 1, which of the following indicates all of the possible values of y ?
A. y >
B.
C.
D.
E. y <
Answer: A
怎么做的呢
S=1/2xysina----->xy=2/sina
因为Y>x----------->y^2>2/sina
因为0=<sina<=1---------->y>根号2
牛~~大四了,这些公式忘得干净
我仔细斟酌了,你的答案没有问题。虽然角度A要大于60度,但是我们只求
sinA最大那个值就好了,也就是sinA=1 A=90度的时候
Q12-31:
题目的要求是indicates all of the possible values of y,
答案A似乎和题意不符,觉得应该:根号2<y<2才是。ETS是很严谨的,郁闷哪...
选项在我这里显示不全,我只能看到完整的题目. 我想说一句的是,请大家注意那个right triangle,是直角三角形的意思.其实这题根本没有想想那么复杂.有余X<Y<Z,Z肯定是直角边,那么很容易就知道面积应该是1/2*X*Y=1 ,==>推出XY=2,又因为X<Y,所以,Y>根号2.....
题目的要求是indicates all of the possible values of y,
答案A似乎和题意不符,觉得应该:根号2<y<2才是。ETS是很严谨的,郁闷哪...
同感!至少不能是个开区间。上限应该被其面积为1的条件所限制了。
我一开始就是这样子排除A/E的.
但是如何求解呢?请教NN.
直角三角形斜边最长,根据题目已知x<y<z, 可以得到x&y是两个直角边,z是斜边.
所以 1/2 *xy =1
=> xy=2 , 又因 x<y
=> xy=2 < y*y=y2
=> y>V2
但是,y没有上限,是个开区间.
从题目给的条件,没有办法得到一个y的上限.
可以一种假设的极端情况来证明这一判断: 假设y无限长,也可以找出一个无限短的x(>0),只要满足xy=1即可. (这时候我们就得到一个无限细长的三角形,hehe~~~)所以说,y是没有上限的~~~
欢迎光临 国际顶尖MBA申请交流平台--TOPWAY MBA (http://forum.topway.org/) | Powered by Discuz! 7.2 |