Board logo

标题: 请教2道毫无思路的数学题 [打印本页]

作者: masushuang    时间: 2012-7-16 06:47     标题: 请教2道毫无思路的数学题

170. 16927-!-item-!-187;#058&010946
If n and t are positive integers, what is the greatest prime factor of the product nt ?
(1) The greatest common factor of n and t is 5.
(2) The least common multiple of n and t is 105.
这个答案B 我问A怎么不可以,最大质因数就是5么~~~还有B怎么证明出来sufficient???
====================================================================
If m, k, x, and y are positive numbers, is mx + ky > kx + my ?
(1) m > k
(2) x > y
这个毫无思路呀~~~
作者: mousemic    时间: 2012-7-16 20:17

1) The greatest COMMON factor of n and t is 5. Then n can have a prime factor of 7, while t does not. Then n*t can have a prime factor of 7, bigger than 5.

2) The least common multiple of n and t is 105. 105 = 7*5*3 = n*a = t*b.  Then n*t can only have prime factors of 7, 5, and 3. Seven would be the bigger prime factor of n*t
作者: masushuang    时间: 2012-7-17 06:15

Thank you~~~
作者: Benite    时间: 2012-7-17 20:50

第二道:
1.移项   m(x-y)>k(x-y)
2.结合选项
作者: Steven0124    时间: 2012-7-18 21:25

(m-k)(x-y)>0
选C吧
作者: ptlove4ever    时间: 2012-7-28 09:32

怎么好像是选D,两个都SUFFIENT额
作者: sunnybyy    时间: 2012-7-30 21:58

应该选C。
m(x-y)>k(x-y)移项变成(m-k)(x-y)>0.要么两项同时大于零,要么同时小于0,一个条件是不够的。




欢迎光临 国际顶尖MBA申请交流平台--TOPWAY MBA (http://forum.topway.org/) Powered by Discuz! 7.2