(1)A的发生概率为0.6,B发生的概率为0.5,问A,B都不发生的最大概率?
请问P(A交B)=?
A不发生的概率为0。4,B不发生的概率为0。5,
(2)if you tossed a coin three times, what's the probability that you get the same side all three times.
请问在何种情况下用加法法则?
(3)袋中有a只白球,b只红球,依次将球一只只摸出,不放回,求第K次摸出白球的概率
(4)4本不同的书分给2人,每人2本,不同的分法有多少种?答案为C42 ,为什么不是 2C42 ,先把书分成两堆,然后在两个人分?[em12][em12][em12][em12][em12]作者: pgclt 时间: 2002-10-17 05:30
(1)A的发生概率为0.6,B发生的概率为0.5,问A,B都不发生的最大概率?
请问P(A交B)=?
A不发生的概率为0。4,B不发生的概率为0。5,
----------------------------------------------
There's been some discussion about this kind of problem. The key issue is whether A and B are dependent on each other. If no inter-dependency, I think A,B都不发生的最大概率 is 0.4. A,B都不发生的概率 is 0.5*0.4 = 0.2.
(2)if you tossed a coin three times, what's the probability that you get the same side all three times.
-----------------------------------
(1/2)^3 for a designated side: head or tail. If just say same side. 2*(1/2)^3 .
(3)袋中有a只白球,b只红球,依次将球一只只摸出,不放回,求第K次摸出白球的概率
----------------------------------------
I don't think such probelms will appear in real exam. trying to solve:
K=1, P1 = [a/(a+b)];
K=2, P2 = [a/(a+b-1)] or [(a-1)/(a+b-1)] depending on first one is red or white.
K=3, P3 = [a/(a+b-2)] or [(a-1)/(a+b-2)] or [(a-2)/(a+b-2)] again depending on first two balls are red or white.
...