Board logo

标题: 求助几道天山-3数学题 [打印本页]

作者: WTO    时间: 2005-3-16 07:16     标题: 求助几道天山-3数学题

1, In the decimal representation of x, where 0<x<1, is the tenths digit if x nonzero?

1) 16x is an integer 2) 8x is an integer 答案是C. 没有思路,没看懂问题

2,For any integer K greater than 1, the symbol k* denotes the product of all the fractions of the form 1/t, where is an integer between 1 and k, inclusive. what is the value of 5*/4*?

A 5 B 5/4 C 4/5 D 1/4 E1/5 没看懂题意

3. What is the remainder when the positive integer x is divided by 8?

1)when x is divided by 12, the remainder is 5

2)when x is divided by 18, the remainder is 11

一直不太会做这种题,想知道思路

4, What is the value of the integer n?

1) n(n+2)=15 2)(n+2)^n=125 我认为应选D。 任何一个都可求出n=3. 而不是答案C.

谢谢了!祝大家好运!


作者: mikejia    时间: 2005-3-16 12:07

1。 1) 16x is an integer x可能是1/2=0.5, 1/4-=0.25, 1/8=0.125, 1/16=0.0625。所以十分位可能0,可能1,2,5。

2) 8x is an integer x可能 1/2=0.5, 1/4-=0.25, 1/8=0.125,所以十分位非零

2。(1/1*1/2*1/3*1/4*1/5)/(1/1*1/2*1/3*1/4)=4!/5!=1/5

后面还没算好


作者: mikejia    时间: 2005-3-17 03:13

3. What is the remainder when the positive integer x is divided by 8?

1)when x is divided by 12, the remainder is 5

(12a+5)/8=[8a+(4a+5)]/8 a=1,2,3....代入,说明不唯一

2)when x is divided by 18, the remainder is 11

(18b+11)/8=[16b+8+(2b+3)]/8 余数结果不唯一

both: 12a+5=18b+11 , 也不唯一。

4. n=负数!






欢迎光临 国际顶尖MBA申请交流平台--TOPWAY MBA (http://forum.topway.org/) Powered by Discuz! 7.2