首先就是余数的加减法:比如说100除以7余2,36除以7余1。那么100+36除以7余几呢?或者100-36除以7余几呢?很显然,只要用100除以7的余数2与36除以7的余数1进行加减就可以得到答案。通过这个例子可以很明显的看出来,余数之间是可以加减的。
总结写成书面的公式的话,就是:(M+N) mod q=((M mod q)+(N mod q)) mod q
举例来说:求11^4除以9的余数。化成公式即是:11^4 mod 9=?
11^4 mod 9 = (9+2)^4 mod 9 = 2^4 mod 9 =16 mod 9 = 7
于是我们可以总结出这样的公式:
M*N mod q=(M mod q)*(N mod q) mod q
( M^n mod q = (M mod q)^n mod q )
那么,我们知道了这些性质之后对解题又有什么帮助呢?
As we all know,如果一个数乘以1,还是等于原数;而1的任意次方,还是等于1。
所以在解答这一类的问题的时候,只要我们尽量把计算中的余数凑成与1相关的乘式,结果显然会好算很多的。(或者-1,2之类的比较容易进行计算的数字都可以,因题而异。)作者: 蓝莓米苏 时间: 2010-4-28 11:46