是TN24里面的16套。
Q2:
If each of the 12 teams participating in a certain tournament plays exactly one game with each of the other teams, how many games will be played?
A. 144
B. 132
C. 66
D. 33
E. 23
答案是C。不知道怎么做的。
Q7:
A school administrator will assign each student in a group of n students to one of m classrooms. If 3 < m < 13 < n, is it possible to assign each of the n students to one of the m classrooms so that each classroom has the same number of students assigned to it?
(1) It is possible to assign each of 3n students to one of m classrooms so that each classroom has the same number of students assigned to it.
(2) It is possible to assign each of 13n students to one of m classrooms so that each classroom has the same number of students assigned to it.
这道题。。。怎么说呢,我看到一长串东西就不想看了。。。貌似看不懂。请好心人帮我翻译一下。。。
Q19:
How many 4-digit positive integers are there in which all 4 digits are even?
A. 625
B. 600
C. 500
D. 400
E. 256
答案是C.我选的是E.当时做的时候觉得这道题目挺简单的,而且也觉得自己是不是想得太简单了。不过想不出来其他复杂的方法。请高人指点迷津。
Q29:
Joanna bought only $0.15 stamps and $0.29 stamps. How many $0.15 stamps did she buy?
(1) She bought $4.40 worth of stamps.
(2) She bought an equal number of $0.15 stamps and $0.29 stamps
这道题好像是我第二次提问了。不过还是没想通。。。为什么是A呢。。。我用最傻瓜的办法算过了啊。
Q31:
A certain right triangle has sides of length x, y, and z, where x < y < z. If the area of this triangular region is 1, which of the following indicates all of the possible values of y ?
A. y > 根号2
这个请牛牛帮我讲一下吧。完全没有头绪。
1.这种题有个规律,就是如果有m个球队,每2个球队打n场球的话,那么比赛场数即为n Cm(2),lz可以带进去试试。这道题为C12(2)
2.这题我也没读懂
3.就是千位数字有4种可能2,4,6,8,其余的三位有5种可能,一乘即可
4.1)能推出,当两种邮票各买10张。
5. z为斜边,所以xy/2=1,由于x<y,带进去即可算出答案~
以上是我的想法,不晓得对否。
我不是牛牛,但帮人解答对自己也是一种提高。希望解释的清楚啦。
Q2: 每个队之间都要打一场,那么一个队一赛季打11场,12个队就是12x11场,但是这样每个队都算了两遍,所以最后还要132除以2
Q7:这题的意思就是说,把有n个人一组的学生分配到m个教室里,3<m<13<n. 然后问,是否每个教室能分到相等的人数。也就是n是否被m整除
1、3n能被m整除,
2、13n能被m整除
单独好像不能确定,和在一起的话 13n/m= 4*(3n/m)+n/m 根据条件,3n/m为整数,13n/m为整数,所以n/m为整数。这题应该选C吧?如不对请指出
Q19:mm忽略了零。千位不能为零,所以一共有4*5*5*5种
Q29: 这题很阴。 0.15x+0.29y=4.4 --> 15x+29y=440.
而 x, y必须是整数。因为15x的个位肯定是0或者5,所以,要满足和的各位为0的话,那29y的各位也必须是0或5。 又因为29y小于等于440并且满足各位为0或5 的时候, y只能为0,5,10,15
但是,如果y=0, 5或 15的时候, x 就不是整数了。
所以y只能等于10,因此,x也等于10
Q31我也不懂,盼望指点!
2. 每个队11场,12个队,一共是12*11/2=66场 (c12 2 =66)
7. n students, m classroom 每人上1个教室,3<m<13<n, 有没有可能每个教室学生一样多?
(1) It is possible to assign each of 3n students to one of m classrooms so that each classroom has the same number of students assigned to it.
有可能把3n学生这样分配,不充分,(n不一定被m整除,i.e. m=6,n=20)
(2) It is possible to assign each of 13n students to one of m classrooms so that each classroom has the same number of students assigned to it.
有可能把13n学生这样分配,充分,(n一定被m整除, 由于13和m互质)
19. 千位是2,4,6,8中的一个,百位,十位,个位都是0,2,4,6,8任取,总共是4*125=500
29. 0.15a+0.29b=4.4, a,b are integers , then only one solution: a=b=10
31. right triangle --- 直角三角形
x,y是直角边,已知xy=2,y>x,得出y一定大于根号2
1. C12取2.每两个队碰一次相当于问有多少种取2个的组合。
2.题意是n个学生能不能等分到m个教室里,就是n能不能被m整除。
条件(1)3n能被m整除。有可能n能被m整除,例m=4,n=16;也有可能n不能被m整除,例m=6,n=14,故不充分
(2)13n能被m整除。由于3<m<13,能取得的值都与13互质,所以只能n是m的倍数。
故选b
欢迎光临 国际顶尖MBA申请交流平台--TOPWAY MBA (http://forum.topway.org/) | Powered by Discuz! 7.2 |