标题: GWD 06 MATH Q4 [打印本页]
作者: GlendaKuo 时间: 2009-7-3 07:15 标题: GWD 06 MATH Q4
What is the greatest prime factor of 2^100-2^96?
Can some one tell me how to solve this problem? Thanks.
作者: nyc_cfas 时间: 2009-7-3 21:29
2^100-2^96=(2^50-2^48)(2^50+2^48)=(2^25-2^24)(2^25+2^24)(2^50+2^48)
and 2^25-2^24=2^24, 2^25+2^24=3*(2^24), 2^50+2^48=(2*2+1)2^48=5*(2^48),
so, prime factor is 5.
作者: GlendaKuo 时间: 2009-7-4 08:29
It can also be: 2^100-2^96= 2^96(2^4-1)= 2^96* (16-1)= 2^96*(5*3)
Therefore , the greatest prime factor is 5.
Thanks.
欢迎光临 国际顶尖MBA申请交流平台--TOPWAY MBA (http://forum.topway.org/) |
Powered by Discuz! 7.2 |