Board logo

标题: GWD 06 MATH Q4 [打印本页]

作者: GlendaKuo    时间: 2009-7-3 07:15     标题: GWD 06 MATH Q4

What is the greatest prime factor of 2^100-2^96?

Can some one tell me how to solve this problem? Thanks.

作者: nyc_cfas    时间: 2009-7-3 21:29

2^100-2^96=(2^50-2^48)(2^50+2^48)=(2^25-2^24)(2^25+2^24)(2^50+2^48)

and 2^25-2^24=2^24, 2^25+2^24=3*(2^24), 2^50+2^48=(2*2+1)2^48=5*(2^48),

so, prime factor is 5.


作者: GlendaKuo    时间: 2009-7-4 08:29

It can also be: 2^100-2^96= 2^96(2^4-1)= 2^96* (16-1)= 2^96*(5*3)
Therefore , the greatest prime factor is 5.

Thanks.





欢迎光临 国际顶尖MBA申请交流平台--TOPWAY MBA (http://forum.topway.org/) Powered by Discuz! 7.2