Q13:
If the sequence x1, x2, x3, …, xn, … is such that x1 = 3 and xn+1 = 2xn – 1 for n ≥ 1, then x20 – x19 =
A. 219
B. 220
C. 221
D. 220 - 1
E. 221 - 1
Answer: A
哎,我相信这题我高中时候会做,现在完全想不起来,555,哪位NN帮帮忙
题目的意思是:如果序列X1,X2,X3,...,Xn,...有如下性质:X1=3, Xn+1 = 2Xn -1,则X20 - X19 = ?
这个题目其实很简单,对于Xn+1 = 2Xn - 1 等式两侧同时减去1 得到 Xn+1 - 1 = 2Xn - 2 = 2(Xn - 1)
这里可以看出Yn = Xn - 1 这个数列其实是一个等比数列
X1 =3, X1 - 1 =2, 从而X20 - 1 = 2^20 从而 X20 = 2^20 + 1
而X19 - 1 = 2^19 从而X19 = 2^19 + 1
X20 - X19 = 2^20 - 2^19 = 2^19
The correct answer is A
题目的意思是:如果序列X1,X2,X3,...,Xn,...有如下性质:X1=3, Xn+1 = 2Xn -1,则X20 - X19 = ?
这个题目其实很简单,对于Xn+1 = 2Xn - 1 等式两侧同时减去1 得到 Xn+1 - 1 = 2Xn - 2 = 2(Xn - 1)
这里可以看出Yn = Xn - 1 这个数列其实是一个等比数列
X1 =3, X1 - 1 =2, 从而X20 - 1 = 2^20 从而 X20 = 2^20 + 1
而X19 - 1 = 2^19 从而X19 = 2^19 + 1
X20 - X19 = 2^20 - 2^19 = 2^19
The correct answer is A
正解
我是用很笨的方法做的,先是x20 – x19 =x19– 1
然后,x19 =2x18– 1=2(2x17– 1)-1=4(2x16– 1)-1=.....根据规律可以看出 x19=2∧18x1–(2∧0+.....+2∧17)
最后等于2∧19
通项做法:
xn+1 +p= 2(xn +p)
xn+1 = 2xn +p
so p=-1
xn+1 -1= 2(xn -1) (q=2)
so xn -1=a1q^n-1=(x1 -1)2^n-1=2*2^n-1=2^n
xn =2^n +1
x20 – x19 =(2^20+1)-(2^19+1)=2^19
欢迎光临 国际顶尖MBA申请交流平台--TOPWAY MBA (http://forum.topway.org/) | Powered by Discuz! 7.2 |