这几道题百思不得其解,希望高人可以解答一下^^
problem solving
1.if n is a positive interger and n^2 is divisible by 72, then the largest positive integer that must divide n is
a.6 b.12 c.24 d.36 e.48
2.a square countertop has a square tile inlay in the center, leaving an untiled strip of uniform width around the tile. if the ratio of the tiled area is 25 to 39, which of the following could be the width, in inches, of the strip?
(1).1 (2).3 (3).4
a.(1)only b.(2)only c.(1) and (2) only d. (1) and (3) only e. (1), (2), (3)
data sufficient
1. a home owner must pick between paint A, which costs $6.00 per liter, and paint B, which costs $4.50 per liter. Paint B takes one-third longer to apply than paint A. If the home owner must pay the cost of labor at the rate of $36 per hour, which of the two paints will be cheaper to apply?
(1) the ratio of the area covered by one liter of paint A to the area covered by paint B is 4:3
(2) paint A will require 40 liters of paint and 100 hours of labor
2. in a certain law firm there are five senior partners and all senior partners receive bonuses greater than those of the junior partner. Does senior partner Johnson receive the largest bonus of the lawyers at the firm?
(1) Johnson receives a bonus greater than twice the average bonus for all the senior partners.
(2) all partners receive some bonus, and Mr. Johnson receives five times the average given to all the partners.
1 B, 题目的意思是:如果n是正整数,并且n^2能够被72整除,那么一定能整除所有n的最大正整数是什么?
需要注意的是最后一句话的意思:对于所有可能的n,一定能整除这些所有的n的最大正整数是什么。
题目中说n^2能够被72整除 从而 n^2=72*k = 2^3*3^2*k,这里k是一个正整数。
由于n^2是一个完全平方数,从而可以确定k一定是一个偶数,即上式可改写为:n^2=2^4 * 3^2 * (1/2*k),这里 1/2*k,为一正整数,并且也为已完全平方数,我们假定(1/2*k)的平方根为m。
从而 n=2^2 * 3 * m = 12*m,m为一正整数。
可以看出无论对于怎样的n 12都一定能整除n 选择B
对于 n=12 的时候n^2为72的倍数,但是24 36 48均不能整除n
3 A 条件1单独可以确定。
题目的意思是这样的:房主必须从两种涂料中选择一种,涂料A每升6刀,涂料B每升4.5刀;涂料B在喷涂中所花费时间比涂料A喷涂中所花费时间多1/3;如果房主还需要给油漆工付36刀一个小时的费用,那么房主应该选择哪种涂料?
1) 每升涂料A能涂满的区域 与 每升涂料B能涂满的区域 之比为4:3
2) 如果选用涂料A的话则需要40升和100小时才能完成房子的喷涂
这里我们假设 所用需要喷涂的面积是S 每升涂料能够涂满的区域分别是SA和SB,每升涂料所花费的时间分别是TA和TB
那么选用涂料A需要的花费可表示为: (S/SA * 6) + (S/SA * TA) * 36 = S/SA * (6 + TA*36)
而 选用涂料B需要的花费可表示为:(S/SB * 4.5) + (S/SB * TB) * 36 = S/SB * (4.5 +TB*36)
题目中说涂料B在喷涂中所花费时间比涂料A喷涂中所花费时间多1/3,可知 TB = 4/3 TA
条件1得出 SA:SB = 4:3 那么上面两个式子相除 得到 选用涂料A的价格与选用涂料B的价格之比 = SB/SA * (6 + TA*36)/(4.5 +TB*36) = 3/4 * (6 + TA*36)/(4.5 +TA*48)
而这个式子始终是小于1的,也就是说选用涂料A总是比选用涂料B的价格要少,从而可以判断结果。
条件2得出 S/SA = 40; 40 * TA = 100。但是缺少每升涂料A能涂满的区域 与 每升涂料B能涂满的区域 之比,从而无法对涂料B的开销做出判断 不行。
可见条件1足够,条件2不行
1.72=6*6*2,n^2可以被72整除,那么n就应该=6*2*m,m为整数
可以整除n的就有2,6,12,12m。因为m的值未知,因此我们只能肯定能够整除n的最大整数一定是12
ds2、(1)只能知道J得到了所有senior的2/5,没有关于junior的信息,因此不能得出结论
(2)知道J得到了senior+junior所有人的1/2,又知道每个人都有bonuses,所以可以判断J是最多的
选B
欢迎光临 国际顶尖MBA申请交流平台--TOPWAY MBA (http://forum.topway.org/) | Powered by Discuz! 7.2 |