Board logo

标题: GWD8-Q3 [打印本页]

作者: lilyblue_zl    时间: 2009-3-2 09:39     标题: GWD8-Q3

Q3:

If k, m, and p are integers, is k m p odd?

(1)     k and m are even and p is odd.

(2)     k, m, and p are consecutive integers.

                  

A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.

B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.

C. BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.

D. EACH statement ALONE is sufficient.

E. Statements (1) and (2) TOGETHER are NOT sufficient.

答案是A,我选的D,为什么2不对???请NN解答~


作者: xp635    时间: 2009-3-2 14:57

Not NN, but can demonstrate this

 

for consecutive integers

if K>m>p

K-M is 1         odd

but the p have two possibilities: odd or even

so, the K-M-P can't be sured whether odd or even.

 


作者: 小巧玲珑    时间: 2009-3-2 16:42

2是说,k,m,p是一个连续的数字。也就是说这三个数依次为m-1,m,m+1,你把他们按照题干中的要求相减,就是k-m-p=(m-1)-m-(m+1)=-2-m,如果m是偶数,-2-m就会是个偶数,m是奇数,-2-m就是个奇数。所以不确定呀。
作者: lilyblue_zl    时间: 2009-3-7 08:54

噢,原来如此~谢拉






欢迎光临 国际顶尖MBA申请交流平台--TOPWAY MBA (http://forum.topway.org/) Powered by Discuz! 7.2