Lists S and T consist of the same number of positive integers. Is the median of the integers in S greater than the average (arithmetic mean) of the integers in T?
(1) The integers in S are consecutive even integers, and the integers in T are consecutive odd integers.
(2) The sum of the integers in S is greater than the sum of the integers in T.
答案给的是C
我选E
举例来看
S={2,4,6} T={1,3,5},符合条件(1)(2)
S的中位数是4,T的平均数是4.5。此时S的中位数小于T的平均数。
S={4,6,8} T={1,3,5},符合条件(1)(2)
S的中位数是6,T的平均数是4.5,此时S的中位数大于T的平均数
所以两个条件都不足以得出结论
请问这样想哪里有错误?
谢谢指教
欢迎光临 国际顶尖MBA申请交流平台--TOPWAY MBA (http://forum.topway.org/) | Powered by Discuz! 7.2 |