想来想去不开窍,谢谢大家帮我看看。
If n is a positive integer and r is the remainder when (n-1)(n+1) is divided by 24, what is the value of r?
(1) n is not divisible by 2
(2) n is not divisible by 3
答案是C 怎么分析呢?
A certain library assesses fines for overdue books as follows. On the first day that a book is overdue, the total fine is $0.10, For each additional day that the book is overdue, the total fine is either increased by $0.30 or doubled, whichever results in the lesser amount. What's the total fine for a book on the fourth day it is overdue?
$0.60 $0.70 $0.80 $0.90 $1.00
答案是B, 我怎么做都是0.8
第一题:条件一可以得出此数是两个连续偶数相乘,可以被8出尽;条件二是两个含有3的数相乘,可以被3出尽,联合,则可以被24出尽。
第二:0.1+0.2*3=0.7.
(n+1)(n-1)=n2 – 1=24k+r
单单看条件1:n不能被2整除,我们可以写为:n=2A-1, (A为自然数)
代人式子中得: (2A-1)2 – 1=4A2 – 4
(4A2 - 4)/24=A(A - 1)/6
其余数随着A的变化而变化,例如A=5和A=3的时候,其余数就不一样。所以条件1不满足条件。
单单看条件2:n不能被3整除,我们可以写为:n=3B-1, (B为自然数)
代人式子中得: (3B-1)2 – 1=8B2 – 6B
(8B2 – 6B)/24=B(4B-3)/12
其余数随着B的变化而变化,其余数也不一样。所以条件2不满足条件。
把条件1和条件2合起来看:n不能被2整除,也不能被3整除,其实就是n不能被6整除。
我们因此可以写成 n= n=6C-1 (C为自然数)
代人式子中得: (6C-1)2 – 1=36C2 – 12C
(36C2 – 12C)/24=C(3C-1)/2
当C为偶数时,上式可以整除; 当C为奇数时。3C-1为偶数,上式也可以整除,所以 余数r = 0 。
故答案为: C
欢迎光临 国际顶尖MBA申请交流平台--TOPWAY MBA (http://forum.topway.org/) | Powered by Discuz! 7.2 |