1.
For every positive even integer n, the function h(n) is defined to be the product of all the even integers from 2 to n, inclusive. If p is the smallest prime factor of h(100) + 1, then p is
(A) between 2 and 10
(B) between 10 and 20
(C) between 20 and 3
(D) between 30 and 40
(E) greater than 40
2.
38, 69, 22, 73, 31, 47, 13, 82Which of the following numbers is greater than three-fourths of the numbers but less than one-fourth of the numbers in the list above?
(A) 56
(B) 68
(C) 69
(D) 71
(E) 73
第一题不会做,第二题竟然看不懂题目的意思。。。。
弱弱地向NN们请教。。。
弱弱地向NN们请教。。。
第二题的意思是:答案中有哪个数字大于上列数字的3/4, 但是小于他们的1/4.
第一题是: h(100)+1与h(100)是连续的两个整数,那么的最大公约数为1,也就是说h(100)中有的因子,在h(100)+1中是没有的。那么我们只要分析h(100)就可以了。
h(100)=1*2*3***100把偶数都提取出来后,等于2^N(2*3*5*7***47)这里不管N的值是多少,括号里面的都是质因子,说明h(100)里包括了小于等于47的所有的质因子,那么h(100)+1就不可以包括这些了,也就是它的质因子一定大于47,所以选E。-----摘自FF
First arrange the numbers in increasing order....
13 22 31 38 47 69 73 83
in all total 8 nos.
now the number which is greater than 3/4 of the total numbers mean and less than 1/4 of the total numbers.
that means the number has to be greater than 3/4= 6/8 meaning that 6 out of 8 numbers.
ANd the numnbers are 13 22 31 38 47 and 69
And less than 1/4= 2/8 meaning that 2 out of eight numbers.
The numbers are 73 and 83. only number that satisfies the condition is 71.
And hence D is the answer.
h(100)=1*2*3***100把偶数都提取出来后,等于2^N(2*3*5*7***47)这里不管N的值是多少,括号里面的都是质因子,说明h(100)里包括了小于等于47的所有的质因子,那么h(100)+1就不可以包括这些了,也就是它的质因子一定大于47,所以选E。-----摘自FF
好像解释错了吧, 不过思路是可以理解的。
谢谢解答,发现自己的理解力很有问题,还没有找到ETS的出题方式。。。
还需要好好加油。。。。
现在正在做PREPMATH,很多很多问题啊,继续努力,不懂就问————
向NN们致谢,致敬!!
小小的总结这2题,NN看看这样说对不?
第一题:
做不来的原因:没有弄懂质因子的概念,没有搞清相邻2个数的最大公约数是1,所以n有的n+1肯定没有,要算n+1,从n下手。
第二题:
greater than three-fourths of the numbers but less than one-fourth of the numbers:
这句理解为找出一个数大于这些数当中的四分之三,但是小于这些数当中的四分之一。
Yes,
Actually, it is a tricky question. Some may make the following mistakes:
1. Greater than the sum of the three-fourth of the numbers.
2. Less than the sum of the one-fourth of the numbers.
Actually, in GMAT land to understand the trick is important.
Thanks.
欢迎光临 国际顶尖MBA申请交流平台--TOPWAY MBA (http://forum.topway.org/) | Powered by Discuz! 7.2 |