Board logo

标题: og11 maths ps题241 不会做,请教! [打印本页]

作者: dream_piggy    时间: 2007-12-24 06:53     标题: og11 maths ps题241 不会做,请教!

if the integer n has exactly 3 positive divisors, including 1 and n, how many positive divisors does n^2 have?

答案为什么是5?

我只能想到用数去试,比如n是9的话,可以适用,那么81的因子包括1和81本身在内,也就只有3和9了,那也才4个呀,为什么答案是5?

另外能否有普遍性的方法解这个知识点?

谢谢!


作者: oliviachens    时间: 2007-12-24 19:19

9有1,3和9

81有1,3,9,27,81

OG上原题有解释


作者: GreenHorse    时间: 2007-12-25 06:48

ls同学不厚道,人家来问按说已经看过og的答案了嘛!

这道题思路是这样:

一个整数只有3个正的因子,可以推导出的是,这个整数只能是一个质数的平方,right?

表达如下:n=p^2

那么,这个整数的平方,就是某个质数的4次方,表达为:n^2=p^4,就只有正因子如下:p^0, p^1, p^2, P^3, p^4,一共5个。


作者: dream_piggy    时间: 2007-12-25 19:51

感谢二位!

我没想到还有27,够猪头了!

质数4次方思路这个太棒了,应该就是做这种题的一个一般通用方法。太感谢了!

好像可以总结为:

把整数的因子用质数表示,其因子的个数就是质数的幂加1。

谢谢!


作者: hebbechou    时间: 2007-12-26 06:25

完全同意LZ的总结.

比如120=2^3*3*5,那么因子数就是(3+1)(1+1)(1+1)=16.


作者: Maggiewjys    时间: 2007-12-26 20:15

补充一下,如果一个数的因子数为奇数,则此数一定是完全平方数.




欢迎光临 国际顶尖MBA申请交流平台--TOPWAY MBA (http://forum.topway.org/) Powered by Discuz! 7.2