- 精华
- 0
- 积分
- 2590
- 经验
- 2590 点
- 威望
- 258 点
- 金钱
- 258 ¥
- 魅力
- 258
|
Condition 1: If x = 1, y = 1, z =0; sufficient to prove x^4 + y^4 > z^4. If x = 4, y = 4, z = 5; insufficient to prove x^4 + y^4 > z^4. Therefore condition 1 is insufficient.
Condition 2: If x = 1, y = 1, z = 0; sufficient to prove x^4 + y^4 > z^4. If x = 1, y = 1, z = -3; insufficient to prove x^4 + y^4 > z^4. Therefore condition 2 is in sufficient.
Combining 1 and 2: If x = 1, y = 1, z = 0; sufficient to prove x^4 + y^4 > z^4. If x = 4, y = 4, z = -5; insufficient to prove x^4 + y^4 > z^4. Therefore conditions 1 and 2 are not sufficient. |
|