返回列表 发帖

GWD8-Q3

Q3:

If k, m, and p are integers, is k m p odd?

(1)     k and m are even and p is odd.

(2)     k, m, and p are consecutive integers.

                  

A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.

B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.

C. BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.

D. EACH statement ALONE is sufficient.

E. Statements (1) and (2) TOGETHER are NOT sufficient.

答案是A,我选的D,为什么2不对???请NN解答~

收藏 分享

Not NN, but can demonstrate this

 

for consecutive integers

if K>m>p

K-M is 1         odd

but the p have two possibilities: odd or even

so, the K-M-P can't be sured whether odd or even.

 

TOP

2是说,k,m,p是一个连续的数字。也就是说这三个数依次为m-1,m,m+1,你把他们按照题干中的要求相减,就是k-m-p=(m-1)-m-(m+1)=-2-m,如果m是偶数,-2-m就会是个偶数,m是奇数,-2-m就是个奇数。所以不确定呀。

TOP

噢,原来如此~谢拉

TOP

返回列表

站长推荐 关闭


美国top10 MBA VIP申请服务

自2003年开始提供 MBA 申请服务以来,保持着90% 以上的成功率,其中Top10 MBA服务成功率更是高达95%


查看